
7 ADAill 016 CARNEGIE-MELLON UNIV 
ITTSBURGH PA DEPT 

OF STATISTICS 
F/B1/

RECENT ADVANCES IN THEORY AND METHODS FOR THE ANALYSIS OF CATEGS-ETC(U)

0 DEC Al S E FIENBERS N00014-80-C-0637
UNCLASSIFIED TR-229 NL



I'

DEPARTMENT

OF

STATISTICS

c.1

!y 
j

C -,

Carnegie-Mellon University
PITTSBURGH, PENNSYLVANIA 15213

____" 8202 17 061 PA
L oom . ,- _ - . _ . .__ - ." -:- ..... -: ..- . . .. .. . ,I



LLA

RECENT ADVANCES IN THEORY
AND METHODS FOR THE ANALYSIS

OF CATEGORICAL DATA:
MAKING THE LINK TO
STATISTICAL PRACTICE

by

Stephen E. Fienberg

Departments of Statistics and Social Science

Carnegie-Mellon University

Pittsburgh. PA 15213. USA

Technical Report No. 229

December 1981

This paper is the text of the R.A. Fisher Lecture. presented at the 43rd Session of the
International Statistical Institute in Buenos Aires. Argentina. November 30 - December
11. 1981. in a session named after recent Honorary Presidents of the ISI. It's
preparation was supported in part by Office of Naval Research Contract N00014-80-C-
0637 to Carnegie-Mellon University.

for , '



I b •

Iu,',

V ,

RECENT ADVANCES IN THEORY AND METHODS FOR THE ANALYSIS OF
CATEGORICAL DATA: MAKING THE LINK TO STATISTICAL PRACTICE

STEPHEN E. FIENBERG

Departments of Statistics and Social Science
Carnegie-Mellon Universit
Pittsburgh. PA 15213. USA

Tell me whereon the likelihood depends.

Win. Shakespeare
As You Like It
Act 1. Scene 3. 5b.

Life is the art of drawing sufficienr
conclusions from insufficient premises.

Samuel Butler
Notebooks

1. INTRODUCTION

It is a great honor to present a lecture named after Sir R.A. Fisher. especially at a

session of the International Statistical Institute, an organization on whose behalf he

expended so much energy. Fisher was one of the most productive and original
statisticians of this century. and much of modern statistical theory and methods has its

origins in his work. This is especially true of the current methods for the analysis of

categorical data via loglinear models. the topic of my lecture.
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The work I shall describe has as its foundation Fisher's notions of "likelinood" and
"sufficiency." and the general theory for loglinear models is intimately linked to results

for exponential families, that are implicit in some of Fisher's most profound theoretical

papers. Amongst Fisher's contributions to statistical methodology are several papers on

contingency table analysis and the distribution of chi-square statistics (see Fienberg.

1980a for a discussion of this work). These. along with Fishcr's observations in other

papers and suggestions by Fisher to his colleagues. serve as the precursors to the more

general results that have been the focus of attention in recent years.

Fisher was not simply a great statistician. he was also a great scientist. And he

worked hard at translating his theoretical statistical results into practical methods. of use

to biologists and agricultural scientists with whom he worked. For example. it was for

them that Fisher wrote Statistical Methods for Research Workcrs. a book that has

served as a statistical bible for statisticians and non-statisticians alike, since it was firsi
published in 1925. Thus, in the spirit of Fisher's own work. I shall discuss not only

the basic statistical theory for the analysis of categorical data using loglinear models.

but also the implications of this theory for general statistical practice in the reporting

of tabular materials, and some of the ex)citing new substantive areas where the theory is

currently being put to practice.

Sir R.A. Fisher was elected a member of the International Statistical Institute in 1931.

Beginning at the end of World War 11. he worked with Stuart A. Rice to revitalizc and

rcorganize the Institute. which had been dominated up to that time by Europeans and

b government statisticians. Over the next 11 years. Fisher struggled to open up the

ISI membership to research statisticians and to integrate their activities with those

statisticians of other persuasions. In her biography of Fisher, his daughter (Box. 1978)

chronicles these activities, and quotes from a letter he wrote in 1956. as follows:

We really have a terrifically long way to go in making the Institute as useful
as it could be, since I think the great majority of our foreign membership
quite take it for granted that it is primaril. an assembly of officials
concerned with national statistics. vital and economic. and of their more
academic economic advisers. These people cannot deny the importance of
mathematical statistics . . . and if we put in undeniably good mathematicians
who insist on talking of the natural sciences and in terms of scientific
research and holding sessions relevant to the applications of mathematical
statistics to scientific research. we have done a pretty good generation's work.

Box (1q78. p.433).
Fisher was not completely successful in these attempts. but he continued to work on IS]

activities, and participate in its meetings. In recognition of his many contributions, the

i -t J ,.. . _
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Institute elected Fisher as an honorary member in 1950. and along with P.C.

Mahalanobis as Honorary President in 195- (only two others had been previously so

honored). Even in his "retirement." Fisher travelled to Japan to attend the 1960 ISI

meetings, and to Paris to attend the 1961 meetings. the last ones held before his death

in 1962.

The next section outlines the statistical theory for loglinear models in the analysis of
categorical data, and links it to the more general theory of exponential families. We

focus there on maximum likelihood estimation. its use of minimal sufficient statistics.

and methods for assessing the goodness of fit of a model. Section 3 brief]%' describes

the application of loglinear model methods for the analysis of multi-dimensional

contingency tables. and then takes the form of an aside. In it we discuss the

implications of loglinear model theory for the reporting of results from large-scale

government sample surveys. especially in the form of tables of cross-classified counts.

In Section 4. we turn to the applications of the results of Section 2 to "non-

contingency table" problems in (a) the Bradley-Terry paired comparisons model. (b) the

analysis of social networks. and (c) the use of the Rasch model in intelligence testing

and its potential for innovative survey analysis. In each case. the non-contingency table

problem is transformed and is re-represented as a problem in contingency-table form.

whose solution has been studied previously.

Much of modern statistical practice relies heavily on the computational

implementation of methodology. In Section 5 of this paper. we briefly summarize the

state of the art of computation for loglinear model methods. and mention some topics

of current research activity that may allow these methods to be of greater practical use

in the future.

2. LOGLINEAR MODELS AND EXPONENTIAL FAMILY THEORY

The analysis of categorical data, focuses on the fitting of models to collections of

counts. often fashioned into the format of cross-classifications or contingency tables.

For purposes of describing the loglinear model approach to such analyses we will

consider a vector of observed counts failing into t cells.

x = (x . X.... X.
(2.1)

. .. . -t, % : ' l '- - d:, . ..
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These counts are realizations of a set of random variables

X = (X. X, X

(2.2)

whose expectations and log-expectations are

m = (mm, . m)

(2.3)

and

(2.4)

%here

m E(X) i 1 2.1,

(2.5)

and

X = log m i = 1.2....t.

(2.6)

For the 2x2 contingcnc. table t=4. and the observed counts are often displayed as

x x

3  4

"r'o basic sampling models, for probability distributions for the random variables X.

ha'c been ,C focus of attention in the literature on the analysis of contingency tables.

A. The Poisson Model. If the (x I are observations from independent Poisson

distributions the probability density or likelihood function is given by

1 -1it

(2.'7)

This model can be thought of as appropriate when the counts represent the simultaneous

record of t Poisson processes. observed foi a fixed period of time.

B. Product-multinomial Model. Now suppose we p.rtition the set of t cells into f

sets. J. where the kth set contains t cells and

. ., .. .. .....
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t= ' t.

(2.8)

Then if the counts in these sets are observations from r independent multinomial

distributions, the sums

n, X, k = 1.2 ..... T.
(2.9)

are fixed by design. The probability density or likelihood function for this general

situation is

x, n (2.10)

subject to the constraints

j m, = n for k = 1.2....r.
k(2.11)

Each of the constraints in (2.11) can be characterized by a vector whose components

are 1 if itJ and 0 otherwise.

When r = 1. we have observations from a single multinomial. When r 2 and i=

4. we have observations from two binomials. Thus. the product-multinomial includes

two of the most widely used sampling models for the 2x2 table. i.e. the two-binomial

model, and the single four-cell multinomial model.

Both the Poisson and product-multinomial sampling models. are special cases of the

exponential family of distributions, introduced first by Fisher in his 1934 invited address

to the Royal Statistical Society (Fisher. 1935). and elaborated upon by Darmois.

Koopman. and Pitman. The general form of the exponential family density (e.g. see

Andersen. 1980 or Barndorf f-Nielsen. 1978) is

f(t.t ..... 1 .0 ...... = [c(0 . ...... 0, exp r 0 ,t h(t ..... t

(2.12)

Both (2.7) and (2.10) can be written in this form, with t = x and 0 = A, although

(2.10) is subject to the constraints (2.11) leading to the use of adjusted 0 's based on

the differences of X 's (for details, see Andersen. 1980. pp. 20-27). Exponential family

theory suggests that the log-expectations X should be the key parameters of interest.

By reexpressing the X *s as linear functions of a reduced number of parameters. we

arrive at the notion of loglinear models for the two basic sampling models.

A well-known result in basic probability, exploited by Fisher in much of his work on

categorical data problems, links the Poisson and product-multinomial models:

.!
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RESULT I. Suppose that X follows the Poisson sampling model. Then the

conditional distribution of X. given the restrictions (2.9). is that of the product

multinomial in (2.10).

To specify a class of loghnear models, for the vector of expectations. mn. we need to

specify a linear subspace of the i-dimensional space in which the vector of

logexpectations. X. lies. Call this subspace M (for model!). Thus we can represen, the

components of A as linear combinations A = A(H) of newly defined parameters H. and

we preserve the exponential family structure of (2.12). We now turn to the problem of

maximum likelihood estimation of the loglinear parameters 0. and of X = (8) itself.

The following general results on maximum likelihood estimation for 8 were originally

developed by Birch (1963). ard later extended by Bishop (1969). Haberman (1974). and

others. They turn out to be special cases of more general results for exponential

families as has been noted by Dempster (1971) and others.

RESULT 2. Corresponding to each parameter in 0 there is a minimal sufficient

statistic that is expressible as a linear combination of the Ix 1. (More formally, if

M is used to denote the loglinear model specified b\ m = rn(). then the MSS's

are given b\ the projection of x onto . i.e. P/x.)

RESULT 3. The maximum likelihood estimate under the Poisson model. in of m

= exp X(O). if it exists. is unique and satisfies the likelihood equations:

PMm = PM.X
(2.13)

i.e. the NILE is found by setting the minimal sufficient statistics equal to their

expectations.

We note that the MLE t of 8 is defined implicitly via the MLE rn of m = exp

X(N) in expression (2.13) In the statement of Result 3. we assume that mn exists.

Necessary and sufficient conditions for the existence of MLE's are relatively complex.

and we refer the interested reader to Haberman (1974) for details.

For product-multinomial sampling situations, the basic multinomial constraints (i.e..

that the counts must add up to the multinomial sample sizes) must be taken into

account. Thus we need to ensure that the constraints (2.11) are in fact satisfied. To

do so. we let M* be a loglinear model for m under product-multinomial sampling which

- -- -~~i C~j - ~



corresponds to a loglinear model M under Poisson sampling, such that the multinomial

constraints. (2.11) "fix" a subset of the parameters. 0. used to specif\ M. Then

RESULT 4 The MLE of m under product-multinomial sampling for the model

M- is the same as the MLE of m under Poisson sampling for the model M..

Result 4 follows directl. from Results 1. 2. and 3. and forms the basis of the unified

approach to loglinear model problems. with and without multinomial constraints, as

described in Bishop. Fienberg. and Holland (1975). Woolson and Brier (1981) show that

a similar result holds for estimates of m (and thus t9) deri'ed using the weighted least

squares approach of Grizzle. Starmer. and Koch (10b9). The key to the result in both

cases is the loglinear structure of the parametric model, and the exponential family

representation of the sampling model.

It is interesting to note that Fisher implicitly exploited Result 4 in his discussion of

the degrees of freedom of the Pearson chi-square statistic for 2xN contingency tables

(Fisher. 1922b). The generalization of Fisher's formulation of the chi-square problem

has led to the following well-known theorem.

RESULT 5. If m is the MLE of m under a loglinear model, and if the model is

correct. then the statistics

(2.)4)

and

0_1 2 x log tx /n)
(2.15)

have asymptotic k: distributions with t-s degrees of freedom, where s is thL total

number of independent constraints implied by the loglinear model and the

multinomial sampling constraints, (2.11) (if any). If the model is not correct then

X, and G. in (2.14) and (2.15). are stochasticall\ larger than ,-

In Result 5. X, is the usual Pearson A: statistic for testing goodness of fit. and G2 is

minus twice the loglikelihood ratio comparing the restricted model m = exp A00) to the

unrestricted model. Fisher (1922a) had noted the asymptotic equivalence of X and G-

in certain situations. and suggested that the Pearson statistic X: achieved its iaidit.

because it is an approximation to the loglikelihood ratio statistic.

......................... .u*



3. LOGLINEAR MODELS. MARGINAL TOTALS. AND THE REPORTING OF
SURVEY DATA

The loghnear model theor. described in the preceding section was developed primaril%

to deal with the analYsis of multidimensional cross-classified tables of counts. In this

section. we review how tilc results of Section 2 can be applied to such tables. and in

the course of doing so we draw conclusions about the reporting of large scale national

probabilit. samples of the type carried by government agencies and others around the

world.

We begin with a simple biomedical example. An experiment was designed to stud\

the effects of two analgesic drugs on post-partum pain of women who had experienced

normal deliveries. A total of 718 women were studied and the% were assigned to one

of four treatment groups:

A B - 0 dosage of drug A and drug B, i.e. placebo
A'B' - 100 mg. of drug B
A B - 200 mg. of drug A
A B - 200 mg. of drug A and 100 mg. of drug B.

The outcome variable for the study was reduction of pain (or change):

C - no reduction
C, - reduction.

The resulting data form the 2x2x2 cross-classification gi\cn in Table 3-1. part la).

k



TABLE 3-1
The Results of an Experiment lnvol'ing Two Analgesic

Drugs Intended to Reduce Post-Parturn Pain

(a) observed counts Ix

Pain Change Totals

Level of Lcvel of C C
Drug B Drug A

A 55 115 1"0

B A 44 132 17(

A 33 154 is-

B A 25 160 185

Grand Total "18

(b) estimated expected counts. im I under model (3.2) and (3.3) subiect to constraints
(3.1). "

Level of Level of C C Totals

Drug B Drug A

A 54.- 115.3 10

B A 44.3 131. 17b

A 33.3 153.7 1s

B. A 24.- 160.3 185

A
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For the data in Table 3-1. the totals for AxB arc fixed b) design (thu toiais differ

somewhat from one another due to the manner in which the stud% was conducted). 'e

are interested in the effects of drugs A and B on the response variable C. Le:

×il = no. women in group A B who respond C

Then the two-wa\ totals, adding over k. are fixed, i.e.
mni x .i.j = 1.2.

~(3.1)

where . "-" implies summation over the corresponding subscript Expression (3.1)

corresponds to the product-multinomial constraints (.1..

One possible model for the data of Table S-I is

rillog --- = w - -v

(3.2)

where

SIA' =:i - w :0.

(3.31

Model (3.2) is referred to as a logit model and ir postulates the addiries e ucts o!

drugs A and B on the logarithm of the odds of pain change m , n: L s:ng Rcsu) 4

of Section 2. we can also represent the logit model o1 (3.2) equi\alenmI, a., ,! joghrear

model for m . ie.

log r u-u u -u - -u -

(3-1)

with the usual ANOVA constraints that whenever a u-term is summed o~er a subscrip

the sum equals zero. e.g.

u u 0.
(3.5)

Since (3.5) is subject to the constraints of equation (3.1). u. u 1. {u 1. and ii. }

are in effect fixed b\ design. while

w = 2 u . :2u and w 2 u1 13 l't 13 ' 23, 11

(S.")

The minimal sufficient statistics for model (3.2) (or (3.4) subject to (3.1)) are the

three sets of two-wa\ marginal totals:

ax u . t x i , x e:

(3.-)

and. using Result 3. the likelihood equations arc:

4
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iM 1.) = 1.2.

M , j.k = 12.

m = .k = 1.2.

(3.8)

The solution to the likelihood equations does not haxe a closed-form expression and

some form of numerical technique is required. such as iterative proportional fitting (e.g.

see Andersen. 1q80: Bishop. Fienberg. and Holland. 1975: or Habcrman. 1974. 1W78).

Part (b) of Table 3-1 displays the NILE's. im 1. for our example. The goodness-of-

fit statistics. (2.14) and (2.15). take values

X: = 0.014. G: = 0.014.

with I d.f. Comparing these values with various tail %alues of the - distributbon. we

see that model (3.2) fits the data. extremely well. Thus the summar. of the 2x2x2

array Ix I in terms of' the minimal sufficient statistics (3.") is a meaningful one. B%

reporting onli the two-wa\ marginal totals, we provide others with "sufficient

information" to estimate the parameters of inirest. In fact. reduced models also fit

the data in Table 3-1 extremely well. and thus we can express the "sufficient

information" even more compactly.

The ideas just described in the context of the 2x2x2 table generalize in a

straightforward fashion to loglinear models for tables of more than 3 &1mensions.

Suppose we are interested in reporting the results of a national simple random sample

of adults. age 25 or older. conducted to provide information on the interrelationship

between educational achievement (variable 1 measured in terms of 4 categories), and

occupational satisfaction (variable 2 with 3 categories), and how it varies with sex

(variable 3 with 2 categories) and ethnic origin (\ariable 4 with. say. 8 categories). We

have a single multinomial sample. but the models of interest are ones that condition on

the "background variables." sex and ethnic origin. Thus. in analyzing the resulting

4x3x2x8 cross-classification, we would focus on models conditional on

m x k 1.2.
s = 1.2..8.

(3.9)

An example of a loglinear model for the arra of expected cell counts {m isI'k

- ~,. =
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log m = U -U U U 3 -U U

U U U -U - u -U

(3.10)

This model postulates simultaneous interrelationships between each of the two "response"

variables (variables 1 and 2) and each of the two "cxplanatory" variables (variables 3

and 4). as well as between the two explanatory variables themselves. This model does

not include any of tile four terms that are interpretable as second-order interactions

involving 3 variables, nor does it include the 4-\ariable. third-order interaction.

Models containing such terms might be of interest to us. however, as the> share with

(3.10) several aesirable features from the viewpoint of reporting of surve% resuls.

For loglinear models of the sort being considered here. the minimal sufficient

statistics always take the form of sets of marginal totals. In our particular example.

they are the five two-dimensional marginal tables corresponding to the fi'e two-factor

terms in the model: the marginal tables for educational achievement by sex. Lx,.

corresponding to Lu }: educational achie\ement by ethnic group. x I.

corresponding to fu }: occupational satisfaction by sex. ix... corresponding to

{u 1: occupational satisfaction by ethnic group. {x 1. corresponding to fu l: and

sex by ethnic group. Ix }. corresponding to Iu 1. If we were to report onl\

these five two-wa\ tables (along w~th a desc:rprion of out moe!) then it would be

possible for a reader with appropriate statistical training to construct a four-dimensonal

table sufficiently close to the observed table that he would suffer essentiall zero

information loss (in the Fisherian sense). pro\ided thai the model fits the data.

The implications of the use of loglinear models for the analysis and reporting of

multidimensional cross-classified survey data are thus relatively clear:

(1) By !he use of model building we are often led to particular fo-ms of summary
appropriate for our data.

(2) In the case of cross-classified data and loglinear models this summary takes the
form of certain sets of marginal lotals. specified by the model.

(3) If we report all of the marginal totals appropriate for a loglinear model that
fits the data well. then another investigator can. in effect. reconstruct the data
with little or no loss in information.

Few government or other survey organizations adopt such a model-based approach to

analysis and reporting. and we are usually left to ponder the relevance of tables that

are reported.

'4



13

The approach to reporting just deszribed for sur'ei-based cross-class icd data

assumed that we arc dealing with either a simple random sample, or perhaps with a

stratified random sample. where the variables underlxmiu 'he strata Wif the', ha'e an.

intrinsic interesi) are included amongst thle eplanator.% %ariabics in thL loghncar models.

The analbsis and reporting of categorical data from sample designs imolhing clustering

or unequal probabilities of selection is more complex (see e.g.. Brier. 1980: Felleg,. 1980:

and Rao and Scott. 1981). but the principles behind the reporting remain the same. We

should no; report summaries of a sur\c. imolving categorical variables onl. in ! form

which presents others from reconstructing what is essentiall\ an equi\alent \ersion of

the original data or some subset thereof (i.e. summaries thal do no. include an

appropriate set of minimal sufficient statistics). This is the type of praclica: advice

that I believe Fisher might have given had he been more extensively involved in the

analysis of sur'e' data!

4. THE USE OF LOGLINEAR MODELS FOR SOME "NON-CONTINGENCY" TABLE
PROBLEMS

The application of the loglinear model results from Section 2 to multidimensional

contingency tables focussed on models where each set of the parameters in the
logarithmic scale is associated with one or more dimensions of the table. One of the

values of general theoretical results is thai they are often applicable to specific settings

beyond those which led to the formulation of the general structure. Thi is certainlx

true for results on the analysis of categorical data problems. Fortunately man' of tile
"non-contingency table" applications of the loglinear model results have contingency

table-like representations so that we can interpret the results of our analyses using

whatever intuition we have gleaned from the analysis of contingency table data using

loglinear models.

4.1 THE BRADLEY-TERRY PAIRED COMPARISONS MODEL

To illustrate this approach let us consider the Bradley-Terr\ model for binary paired

comparisons, a statistical topic which has been studied extensicl\ for almost three

decades (for an excellent review of this literature see Bradley, 1976). Suppose t items

(e.g.. different types of chocolate pudding) or treatments. labeled T,. T..... T, are

compared in pairs by sets of judges. (Or suppose that t football teams compete in

pairs in a series of matches.) The Bradley-Terr. model postulates that the probability

of T being preferred to T is

iA
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Pr(T T ) . i.j = 1.2 ..... t.
it r

Sj.

(4.1)

where each ' 0 and we add the constraint that " 1. The model assumes

independence of the same pair b% different judges and different pairs b\ the same

judge. In the example of the football matches we assume the independence of

outcomes of the matches.

TABLE 4-1

Layout for Data in Paired-Comparisons Stud. with t = 4

Against

T T T T

T X- X N,
T. -- -

For

T x x N -
"F X X N -

4 4" :

In the typical paired comparison experiment. T is compared with T n - 0 times.

and we let x be the observed number of times T is preferred to T in these n

comparisons. Table 4-1 shows the typical layout for the observed data when t = 4.

with preference (for. against) defining rows and columns. Clearly the binomial

constraint.

(4.2)

is of the form (2.9). and we can appl, Result 4 of Section 2 to convert (4.1) into a

model for expected values for a Poisson sampling setting. i.e.
log m = c *fi+v

(4.3)

where

(4.4)

with suitable side constraints. But this. as was noted in Fienberg and Larntz (1976). is
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simpl% the model of quasi-symmetry in a square contingency table (see Bishop.

Fienberg. and Holland. 1975. Chapter 8). The minimal sufficient statistics are (from

Result 1)

Ix }. Ix }. I\ x I

44.5)

(actually either the row or column totals are redundant), and we can use a trick.

suggested in Bishop. Fienberg. and Holland. to transform the problem to one for a

three-wa table of expected counts. We generate duplicate tables and set

m k 1.
im -

m k=2

(4.b)

and. for the observed counts.

X k= 1.
X =

k=2,

14,7)

Then the loglinear version of the Bradleyv-Terr\ model given b (4.3) and (4.4) becomes

the model of no-second-order interaction in tlie new 3-dimensional table, whose

mininral sufficient statistics are (Ix 1. {x 1. {i 1). Thus we can analyze the fit of

the model and variations on it in a familiar contingency table setting of the sort

described in Section 3

These results on the loglinear representation for the Bradley-Terry model are b. no%

reasonably well-known, and they can be extended to more complex settings invol\ing

ties. multiple comparisons, and rankings. Recent results by Meyer (1981) are of special

use in given contingency table representations to some of these generalizations. For the

remainder of this section we describe two other classes of categorical data problems

where loglinear models are proving to be useful. and for which standard contingenc.y

table representations are especiallN helpful for both theoretical and computational

reasons.

4.2. MODELS FOR SOCIAL NETWORKS

A directed graph consists of a set of g nodes. and a collection of directed arcs

connecting pairs of nodes. Such graphs have been used to depict social networks

describing relationships between pairs of individual actors. Figure 4-1 contains an

example of such a graph for the relationship "social friendship." for 12 5th grade boys.
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Each bo% was asked to name the two boys with whom he was the friendlicst outside

the classroom. Table 4-2 summarizes the information from the directed graph of

Figure 4-1 in the form of a 12x12 sociomatuix or adjacency matrix. x. with elements

1 if i chooses j as his friend

0 otherwise.

(4.8)

where b\ convention, the diagonal terms x 0.

Holland and Leinhardt 1981) note that for an\ pair or acac, in a netork. wilh

adiaccnc. matri\ x.

for i j. and that c\actl) one of the terms on the left hand side of (4.)l is I and the

remaining three arc 0. They then suggest the following model to describe these

outcomes (using X as the matri of random variables of which ihe adjacenc. matrix x

is a realization):

log Pr[(I-X )(1-X ) 1 =

log Pr[(I-X )X 1 =A'

log Pr[X (-X) = ; * A,' -

log Pr[X X = 1 - c " ' A' -

(4.10)

where the I k I are "dyadic" effects included here (but on)% implicitlh in Holland and

Leinhardt) to assure that the multinomial constraint (4.Q) is satisfied, and where
=' 0.-t =O

(4.11)

There arc too man\ parameters in this model for complete identification, and so

Holland and Leinhardi set

P., =

(4.12)

The% refer to the resulting model as p.

. . . . - - - -. ' - - - _ -
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TABLE 4-2
Sociomatrix for Social Friendship Among 12 5th Grade Boys

A BC D EF G HI JK L

A:1::
B: 1

D:i
F: I:

J: I

1: I
L 1 1

N : :1

FIGURE 4-1
Sociogram or Directed Graph Representing Data in Sociomatrix of Table 4-2
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If we assume that the dyads are independent, then we have a product-multinomial

sampling model with one observation per multinomial. (This model doesn't yet take

into account the extra constraints in the data of Table 4-2 where the row sums of x

are all restricted to equal 2). Holland and Lcinhardt make direct use of (he

exponential family theorY results on maximum likelihood estimation (c.f. Section 2) to

estimate the parameters in p . Fienberg and Wasserman (1981a. 1981b) note. however.

that there is a direct link between the p model and a loglincar model for a multi-

dimensional table representation of the probabilities in (4.10). In particular. they work

with the four-dimensional array:

X XX

X X (1-X)
II|I0

X (I-X )X

X = (-X )(1-X ).

(4.13)

Note that

x =X

(4.14)

because the dyad (xij) is the same as the dvad (j.i). Thus. if Ix I is a realization of

IX I wc only need to consider one "triangle" of {x } in which i > j. But b\

retaining all 4g- cells in the gxgx2x2 table we arc able to express the minimal sufficient

statistics for the parameters of p as marginal totals of 'x I:

l:X =1 X
'I ici I' It

X. XI 1.2 ..... g.

(4.15)

Finally. b\ coupling (4.15) with (4.q) and (4.14). and then reexpressing. we can get an

alternative set of sufficient statistics:

Ix l. ix I. 1x . (x 1. ix I. Ix 1.
(4.16)

(allowing for redundances resulting from symmetries and duplications). But (4.16) and

the set of six two-dimensional marginal totals of the four-dimensional arra\, and it can

be shown (Meyer. 1981) that fitting p to x = ix ) is equivalent to fitting the no-

second-order interaction model to the newly created redundant arra\ {x .Uk
"I

L !>



This standard contingency table representation for Holland and Leinhardz's p, mode)

leads to superior numerical solutions to the likelihood equations. It also leads naturally

to a generalization of p, where

S= i - y i ) j.

(4.17)

Fitting this model to {x } is equivalent to fitting the standard loglincar model to {x }

with minimal sufficient statistics
{x~, *. {\ I. {x* lb .

(4.18)

We now return to the data in Table 4-2 on social friendships amongst 12 grade 5

boys. and recall that the row totals were fixed to equal 2. by design. This leads to a

relatively complex hypergeometric sampling scheme. but we can approximate results for

it by using the methods for p, just described and then focus only on the parameters

{fl} and p. Our analysis of the data in Table 4-2 is relatively straightforward.

Measuring the fit of Holland and Leinhardt's p, model using the likelihood ratio

criterion of expression (2.15). we get G = 104.15 with 98 d.f. (The general formula for

d.f. is gtg-1) and g = 12. but we need to adjust here for the zero marginal total in the

bth column.) Next we fit the "differential reciprocity" model. (4.17). whose fitted is

summarized by G 92.84 with 87 d.f. (the d.f. calculation here is quite problematic.

but the results do not depend on a precise calculation). Thus we can check on the fit

of p, to the data in Table 4-2 by taking

-AG = G' - G: = 11.31
i, J,

with "approximatel." 11 d.f. The p, model fits reasonably well. The boys who attract

the most friendship (e.g. boys 2. 3. 9. 10. and 11) do not appear to reciprocate in a

differential manner from those who attract little friendship, given that we adjust for

their differing levels of attractiveness.

What is especially attractive about the multi-dimensional contingency table

representation of the social network data problem as outlined here is that it carries

over to networks involving multiple relationships. For details. see Fienberg. Meyer. and

Wasserman (1981). Yet this type of representation is not a panacea. The sparseness of

the array fx I makes the application of the usual asymptotics. and in particular Result

5 of Section 2. problematic at best. The array lx I is of size 4g2 but \ 2g(g-

1). and the p, model has 2g parameters. For a more detailed discussion of the relevant

asymptotics for this problem see Fienberg and Wasserman (1981a) and Haberman (1981).

-I

*.. - '***
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4.3 THE RASCH MODEL

We now turn to yet another problem which begins with a representation as a two-

way table of O's and l's. and ends up as a relativel. standard multi-dimensional

contingency table problem. The results of aitlity tests are often structured in the

form of sequences of 1's for correct answers and O's for incorrect answers. For a test

with k problems or items administered to n individuals, we let

1 if individuai i answers item j correctl.1
Y1 =

0 otherwise.

(4.19)

Thus we ha~e a two-wa\ table of random variables {Y with realizations IY 1. An

alternative representation of the data is in the form of a nx2' table {W } where

the subscript i still indexes individuals and now j,.j ..... J refer to the correctness of the

responses on items 1.2 ..... k. respectively. i.e.

1 if i responds j.j....j)W = F., 0 otherwise.

(4.20)

The Rasch model (Rasch. 1960 as reprinted in 1980: Birnbaum. 145 ") fo: the {Y I is

P(Y =1)log -----'---- IPY =0)

(4.21)

where
Xt ' --0 .

(4.22)

Differences of the form , - p arc typicallY described as measuring the rclativc

abilities of individuals i and r. while those of the form - , arc described as

measuring the relative difficulties of items j and s. Expression (4.21) is a iogit model

in the usual contingency table sense for a 3-dimensional array whose first layer is Iy I
and whose marginal totals adding across layers is an nxk table of ls. Because the

Rasch model depends on the item parameters in a non-linear way. it is not at all clear

whether we can collapse the arra\ Iw I b\ adding ovex subjects for estimation

purposes. We return to this matter below.
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Duncan (1982) has proposed that we should 'iew certain types of surv'c data in much

the same wav as we do ability est data. For example. li describes a 4-item scale

included in a surve. pertaining to beliefs about effects of marijuana. If wc can

consider these items in isolation from the rest of the sur\e questions (see the

discussion of this in Section 3 on reporting), then we can display the relevant data as

an nx4 array of the form (4.19). and we can explore the appropriateness of the Rasch

model as a description of the observed data. In the context of Duncan's examples the

indi'idual parameters. {1. can be thought of as values for a "latent trait" of the

sur\e respondents in much the same wa. as ps'chometricians ha\c intepreted thesk:

parameters as measuring the single latent trait. ability. Duncan discusses the matter, not

considered here. of structuring the ,, s according to multiple dimensions. and he links

the notion of background variables and stratification to differing latent trait structures.

Maximum likelihood estimation for the parameters of the Rasch model (4.21) has

been the focus of several authors including Rasch and Andersen. Unconditional

maximum likelihood (UML) estimates can be derived but the\ have rather problematic

asymptotic properties. e.g. the estimates are inconsistent as n - cc and k remains

moderate. although the\ are consistent when both n and k - : (Haberman. 1Q"7).

Before turning to an alternative to the UML approach. we point out a recentlx-

derived result for UMIL estimates for the Rasch model which links up In .et another

wa\ with loglinear structures for contingency tables. In order to dcrivc necessary and

sufficient conditons for the existence of UML estimates (a problem not reall) discussed

for an% of the data structures in this paper). Fischer (1981) embeds the matrix v =

l I into a larger (n-k)x(n-k) matrix of the form:

(4.23)

where e is an nxk matrix of ls. so that. for all (ij).
a = a = 1.

(4.24)

Then he notes that the Rasch model of (4.21) is transformed into an incomplete version

of the Bradle.\-Tcrr\ model of expression (4.1) discussed at the beginning of this

section. i.e.
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i = k-I ..... k-n.
Pla =1)

S r j= 1.2 ..... k.

(4.25)

and similarly for the other non-zero block of entries in A. where

if i.r = 1.2 ..... n.
log -= p -

if i# r.
r

(4.20)

and

if j.s 1.2....k. J
log - ).

j S.

(4.2"7)

Thus. using a three-dimensional representation for A alluded to at the beginning of this

section. we can shoi that estimation results for the UML approach to the Rasch model

correspond to those of for the no-second-order interaction model applied to an

incomplete three-dimensional contingenc. consisting of two zero blocks of dimension

kxkx2 and nxnx2. and a duplicated version of the nxkx2 table with layers y. and e - y.

Now. we turn to a conditional approach to likelihood estimation (CML) advocated

initially by Rasch. who noted that the conditional distribution of Y given the individual

marginal totals Iv I depends only on the item parameters. {, I. Then each of

the row sums (y I can take only k-1 distinct values corresponds to the number of

correct responses. Next. we recall the alternate representation of the data in the form

of an nx2' arraN. IW }. as given by expression (4.20). Adding across individuals

we create a 2' contingency table. X. with entries

X

(4.28)

Earlier. we asked the question of whether we could work with this collapsed array.

The answer is yes. since all of the information we need to preserve is the response

pattern. i.e. {j..j ...... j. and the number of "correct" responses that correspond to that

pattern. Such information allows us to completely reconstruct the original matrix of

responses. Y. except for the labelling of individuals, and thus we can use the 2' array

x to represent tle conditional distribution of X given {Y y }.

Duncan (1982) and Tjur (1981) independently noted that we can estimate the item

parameters for the Rasch model of (4.21) using the 2' array x. and the loglinear model
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log m =,,-Y ,

(4.29)

where the subscript j 3 . = if I= and is 0 otherwise, and

= 0

(4.30)

The amazing result, due to Tjur (1981). is that maximum likelihood estimation of the

2' contingenc% table of expected values. m = {m I using a Poisson sampling

scheme and the loglinear model (4.2)). produces the conditional maximum likelihood

estimates of fi I for the original Rasch model. Tjur pro\es this equivalence bx (11

assuming that the individual parameters are independent identically distributed random

variables from some completel unknown distribution. ?' (2) integrating the conditional

distribution of Y given IY.=. . o\er the mixing distribution. r: (3) embedding this
"random effects" model in an "extended random model": and (4) noting that the

likelihood for the extended model is equivalent to that for (4.29) applied to x (using

Result 4 of Section 2 above).

TABLE 4-3
Multiplicative Representation of Expected Values of Model (4.2)) for the Case k = 3

Item C

Yes No
Item A Item A

Yes No Yes No

Yes abcS abS bcS, bS
Item B

No acS aS cS S

For k=3. the loglinear version of the Rasch model for the 2 table. i.e. (14.29)). can be

represented in multiplicative form for the expected values m as in Table 4-3. The

minimal sufficient statistics are
ix 1. lx I. {x I

(4.31)

and
x x "4 X + X + x ,

I I !" 11 It W Mt I~ 10 " (110 01/) i 00

(4.32)

But these are the minimal sufficient statistics of the model of quasi-symmetry

preserving one-dimensional marginal totals which was first proposed b\ Bishop.

Fienberg. and Holland (1975. Chapter 8). Indeed, that model is equivalent to (4.29).

A
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Thus following the prescription of Bishop. Ficnberg, and Holland (10'5. p.305), we can

re-represent the data in a 4-dimensional redundant form (as a 2.2x2xb tabie) and

estimate the Rasch model item parameters using a standard loglinca7 modcl fitted to a

4-wa' table (although not thle 4-wa. table A of expression (4.20)). Additional

simplifications ensue here because

m =

(4.33)

Placket (1981). in a very brief sector, of the 2nd edimr: oj his monograDl: on

caiegorical data analysis. notes that the Q-statistic of Cochran (1950) can be iewed as a

means of testing that the item parameters in the Rasch model arc all equal and thus

zero. i.e. , = 0 for all j. This observation is intimately related to the results just

described, and our original data representation in the form of an nxk (indi viduai b\

item) arra\ y is exactly the same representation used b? Cochran. B\ carrm Ing ou: a

conditional test for the equality of marginal proportions gi~en modei (4.20). i.e. quasi-

symmetr\ preserving one-dimensional marginals. we get a tes: that is essentiall

equivalent to Cochran's test. But this is also the test for { = 0} within model (4.20).

Duncan (1982) gives several examples of the application of the Rash model to sure\

research problems. and he prescnts several extensions of the model, indicating hok the%
can be represented in a multi-dimensional table format such as tha: of "lable 4-3.

5. COMPUTATION FOR LOGLINEAR MODEL METHODS

As we noted in Section 3 on multi-dimensional contingency tables. we do not

necessarily get closed-form estimates of the MLE's rn of the expected counts. Thus

some form of iterative numerical procedure is often required. Tie most popular

numerical procedure for calculating MLE's is the method of itetat/v'e proportlonal

fitting (IPFP): which iterativcl\ adjusts the entries of a contingenc.% table to haxe

marginal totals specified by the likelihood equations.

To illustrate the algorithm we consider a three-way table of independent Poisson
counts. x = Ix }. Suppose we wish to fit the loglinear model of no-second-order

interaction for the mean m, i.e. the model given b\ expression (3.4). The basic IPFP

takes an initial table m '. such that log (m'') satisfies the model (iypicall\ we would

use m 'O = I for all i,.. and k) and sequeritially scales the current filied table to

satisfy the three sets of the two-was margins of the observed table. x. The th

iteration consists of three steps which form:

-.. .." -, _.,. . ;:.-. -S,--..k A -'- - --' _- _
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m =m X fill

,' (5.1)

(Thc first superscript refers to the iteration number. and the second to the step number

within iterations). The algorithm continues until the observed and fitted margins arc

sufficientl) close. For a detailed discussion of con\ergence and some of the other

properties of the algorithm, see Bishop. Fienberg and Holland (1q5) or Haberman

(1Q-4),

Common alternatives to the IPFP are versions of Newton's method or other

algorithms which use information abouz the second derivatives of the likelihood

function. While such methods have quadratic convergence properties compared to tie

hnear properties of the IPFP. and are often quite efficient (see e.g. Haberman (10"4).

or Fienberg. Meyer and Stewart (Uq-1)). the% are of limited use ior models of high

dimensionalit. because of storage requirements. Newton's method also automaticalk

produces an estimate of the variance-covariance matrix of the parameters. buz this is

what requires all of the storage space. Currentl., the most w ide).\-used computer

program that employs a Newton-like aigorithm is GLIM. wh ci is distributed bX the

Numerizal Algorithms Group of the United Kingdom (Baker and Nelder. !Q-8).

Recent research on numerical procedures for maximum likelihood estimation in

loglinear models has focussed on alternaii\e algorithms that will handle the t\pes of

large data arrays that arise in practical problems. For example. Fienberg. Meyer. and

Wasserman (1981) describe an application of the social network methodology of Section

4.3 in which the basic data consist of three correlated -3\-3 adJacenc\ matrices. We

briefl\ outline three different approaches tha. have been proposed to handle large data

arrays.

One approach to increasing the storage capacity of current problems is found in work

in progress b\ Fienberg. Meyer. and Stewart (1981). who have been developing programs

for both loglinear and logit models using a variant of Newton's method. Their

algorithms involve the construction of the upper half of a pxp weighted cross-product

matrix where p is the dimension of the parameter vector 0. and take full advantage of

the sparseness of the nxp design matrix without actually constructing it. The algorithms

proceed via Newton's method with variable step length. using a Cholesk.% decomposition

&
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with pioting. A special feature of thest. algorithms is a subroutine tha" checks for the

c\istence of NILE's. ;i. bx performing a pivoted Cholesk. decomposition on a

substantuall% reduced problem. It should be possible to use these algorithms. when ihc.

become available, as replacemenL, for the Newton-like algorithms in programs suzh as

GUM.

McIntosh (1981) has proposed the use of .ct another alternati'e to IPFP. the method

of con'ugate gtadients. Unlike Newton's method which uses the lull matrix of second

deriatives of the likelihood function. the method of conjugate gradients works b%

carryino out an "optimal" sequence of one-dimensional maximizations. Thte mcihcd o!

conjugate gradients has storage requirements similar to that of IPFP. but has
1"superlinear" convcrgence properties. McIntosh (1981) provides numerical comparisons

of different algorithms for sexcral contingenc. table examples bu: these fail to

demonstrate the areas of superiority of the current versions of his zoniugatc gradient

algorithms, which ha\e been implemented within GLIM.

Finall\. we note the recent work of Meyer (1981). who considers generalizations of

IPFP due to both Haberman (1975) and Csiszar (l75). Mexer has deeloped a new

method tor estimating MLE's thai is espczaclly attracti\e for large problems and which

combines the advantages of both Newtor.'s method and IPFP. Basicall'. his approach is

to break the large problem into manageable but overlapping subproblems. Then he

iterates in an IPFP-like manner amongst the subproblems. for each o' which he uses

Newton's method.

All of the computational approaches just discussed are currently under active

devclopmcnt. We expect thai these and other efforts will ultimatcl\ expand the scope

and size of categorical data problems that can be analyzed using loglinear moel

methods.

b. CONCLUDING REMARKS

In this lecture I have examined a variety of categorical data problems using models
that arc linear in the logarithms of the expected cell values. The methods and models
are linked to a small core of theoretical statistical results depending on exponential

familb theory, and the concepts of minimal sufficient statistics and maximum likelihood

estimation. All of these results have as their foundation research work of Sir R.A.

Fisher.

- -



ThL building of bridges from statistical theor.% to statistical practice is at. actmi kt

which Fisher thought to be especiall. appropriate for ISI Meetings. I hope that man%

of you will ha\e crossed such a bridge with me toda., and in the process gained an

appreciatior for the richness of the theoretical result.,, on loglincar models for

categorical data anal.%sis. and the manm different practical areas to which the. ma\ be

appied.
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Trio past 20 .years ha,. L seen ar, cnorrnous grov.:,h ir the statistical litcraturc or, the

arnLIvsts of categorical data. much of i*. based or the usC Of loglinear models. This

papcr re' iet s sorni ol the general resuitS on maximium likelihood estimation for

loglincar models and hniks them back to ideas tha, ha~e the:7 foundations in the work

of Sir R. A. Fishe. These results ha' e special rele~ ance fo-, the analysis of

multidimensional contingenc\ tables. and fo- tne reporting of dat from- large-scale

sample sur'c.s. In addition. the resL:!.s are applicable to other categori.al data

problems that, art often representable in con,.ingenc-N table form. The paper concludes

with a brief description of the state of the art of comrputation for ioglinear model

methods.

RESUMVE

Les \ingi annees prcedentes on, assiste a une croissance consderable de la iitteIatr

statisque traitant Yanal.\se des tables de contingence. sou'ent en utilsant des modeles

log-lineaires. Get artie passe en rev*ue quclques resultaLs generaux sur ]'estimation

maximum de vraisemblance pour les modeles log-lineatres. et les relie a des idees,
provenanh de loeuvre de Sir R.A. Fisher. Ces resultats ont, un rapport particulier a

Fanalyse des tables de contingences multidimensionelles. et aul reportage des donne'e'

d'enquetes etendues. En plus. ces resultats exu'ent ser'tr a 'Ianalyse d'autres donnees

calegorique.s qu; permillcnt une presentation tabulaire. L'aricle se conclui avec une

courte description des methodes numeriques utilisee 's present pour lanalyse des
mod'les log-Itricaires.
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This paper reviews some of the general results on maximum l ikelIihood
estimation for logi inear modelsand links them hack to ideas that haZve the~ir

foundations in the work of Sir R.A. Fisher. These results have special
relevance for the analysis of multidimensional contingency table.-, anid for
the reporting of data fronm large-scale sample surveys, In additions, the

results are appl icable to other categorical data problems that are oftenl

representable in contingency table form..
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